PMMDA GUIDE TO

DRYERS

Guide to

DRYERS

Introduction

This document has been compiled by the PMMDA to provide plastics processors with a guide to material drying and a code of practice against which dryer specifications can be measured.

The need for drying

Many thermoplastics absorb moisture during manufacturing, transport and storage. During the melt, hydrolysis can occur resulting in substandard finished products in terms of both physical properties and surface appearance. Drying prior to processing removes absorbed moisture preventing the occurrence of hydrolysis.

Glossary of terms

Aftercooler For high temperature drying, a heat exchanger on the return air reducing the air

temperature to maximise desiccant efficiency.

Carousel Dryer Multiple desiccant cells mounted on a rotating carousel cycling through process

drying, regeneration and cool down.

Cooling of desiccant cell after regeneration to maximise drying efficiency.

Dehumidified DryingUse of heated, low dew point air, causing moisture to diffuse outwards from

within the pellet.

Desiccant Medium within the drier which extracts moisture from the re-circulating process

air.

Dewpoint The temperature at which condensation of moisture begins

Equilibrium The rate of diffusion of moisture into and out of the pellet are equal, the

moisture level of the material remaining constant and in equilibrium with the

surrounding atmosphere.

Hydrolysis A chemical breakdown of the molecular structure of the polymer in the melt due

to the presence of water and heat.

Hygroscopic Materials which absorb moisture within the pellet (dehumidified drying

recommended).

Initial Moisture Content Moisture content by weight prior to drying.

Non-Hygroscopic Material which take on surface moisture only.

RegenerationHeating of desiccant cell to high temperature to drive off absorbed moisture.

Dwell time of material in the drying hopper required to ensure proper drying

Residual Moisture Content Moisture content by weight after drying

Single Desiccant Fixed Bed Dryer One desiccant cell cycled through process drying, regeneration and cooldown.

Twin Tower Flat Bed Dryer Two desiccant cells alternated between process drying and

regeneration/cooldown.

Moisture Content of Air

Dewpoint	PPM				
(°c)	(parts per million)				
-50	39.4				
-44	80.1				
-40	126.9				
-36	197.8				
-32	303				
-30	374				
-26	564				
-20	1015				
-16	1480				
-10	2562				
0	6020				

Dryer - Units of Measurement

Material throughput	kg/hr		
Airflow	M³/hr		
Temperature	°C		
Process Air Blower	kW		
Regeneration air blower	kW		
Process heater internal	kW		
Process heater external	kW		
Regeneration heater	kW		
Total connected load	kW		
Average running load	kW		
Compressed air consumption	L/min		
Compressed air pressure	Bar		
After-cooler water flow	L/min @ °c		
Dimensions (L x W x H)	mm		
Weight	kg		

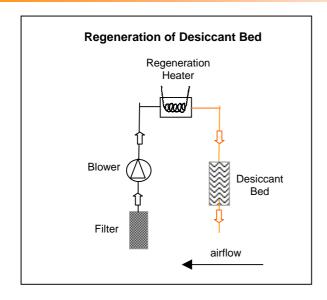
Dryer - Specification

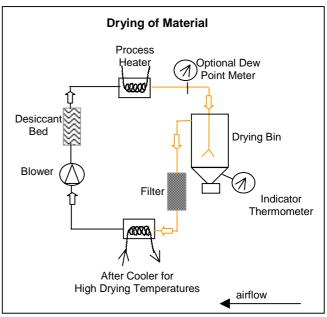
Type of blower	Root, side channel or other		
Desiccant system	Silica gel or molecular sieve		
Desiccant system	Fixed bed or carousel		
Number of desiccant cells	Number		
Weight of desiccant per cell	kg		
After cooler	Yes/no		
Control system type	Define		
Regeneration control	Fixed time, dew-point, other		
Filter alarm	Yes/no		
Energy saver	Yes/no		

Hopper - Units of Measurement

Hopper Volume	L	
Hopper Heater	KW	
Dimensions	mm	

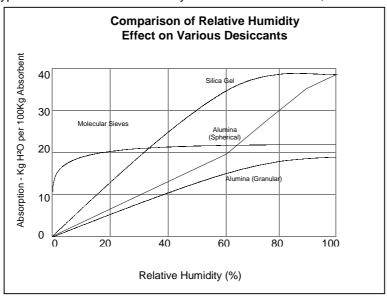
Hopper - Specification


Construction (material contact points)	Mild steel, stainless steel, aluminium, G.R.P., others
Insulation	Yes / No
Insulation type	Define
Access Opening	Yes / No
Method of access	Define
Sight Glass	Yes / No
Mounting	Machine / Floor frame / Mobile
Drain Port	Yes / No
Material Shut-off	Yes / No
Material Shut-off Operation	Manual or automatic
Interconnecting Pipework Construction	Define
Delivery air pipework insulation	Yes / NO P


PMMDA Material Drying Parameter Guidelines

Material	Drying Temp (°c)	Bulk Density (kg/L)	Residence Time (hr)	Initial Moisture Content (%)	Residual Moisture Content (%)	Airflow Requ. (Nm3/kg/hr)
ABS	80	0.6	2-3	0.2	0.02	1.3 - 1.7
CA	75	0.5	2-3	1.0	0.02	1.8 - 2.5
CAB	75	0.5	2-3	0.8	0.02	2.2 - 2.5
СР	75	0.6	2-3	1.0	0.02	2.1 - 2.5
LCP	150	0.6	4	0.04	0.02	1.3
PA	70-80	0.65	3-6	1.0	0.05	1.7 - 2.2
PBT	120-140	0.7	4	0.3	0.02	1.3 - 1.7
PC	120	0.7	2-3	0.3	0.01	1.3
PE	90**	0.6	1	>0.01	>0.01	1.3 - 1.7
PE (40% black)	90	0.6	3	0.8	0.02	2.2 - 2.4
PEEK	150	0.6	3-4	0.4	0.02	1.3 - 1.7
PEI	150	0.6	3-4	0.25	0.02	1.3
PEN	170	0.85	5	0.01	0.005	1.7 - 2.5
PES	150-180*	0.7	4	0.8	0.02	1.4 - 1.7
PET (inj)	110-120	0.85	3-4	0.04	0.02	1.2
PET (preform/Extrusion)	160-180	0.85	6	0.08	0.005	1.7 - 2.5
PETG	60-70	0.6	4-6	0.5	0.02	1.7
PI	120-140	0.6	3	0.4	0.02	1.1 - 1.3
PMMA	70-100	0.65	3	0.5	0.02-	1.4 - 1.7
POM	95-110	0.6	3	0.2	0.02	1.2 - 1.7
PP	90	0.5	1	>0.01	0.02-	1.3 - 1.7
PPO	110-125	0.5	2	0.13	0.04	1.3 - 1.5
PPS	140-150	0.6	3-4	0.1	0.02	1.3
PS	80**	0.5	1	>0.01	0.02	1.1 - 1.3
PSU	120-170*	0.65	4	0.3	0.02	1.3 - 1.4
PUR	89-90	0.7	3	0.2	0.02	1.8 - 2.0
PVC	70**	0.5	1	0.1	0.02	1.1 - 1.5
SAN	80	0.5	2-3	0.1	0.05	1.2 - 1.5
SB	80	0.6	2	0.2	0.05	1.2 - 1.5
TPE	105	0.7	3	0.1	0.02	2.1

^{*} Higher temperatures are for extrusion grades** Surface moisture removal


NB: PMMDA Guidelines only. Consult material supplier for details.

Molecular Seive vs. Silica Gel Desiccant

Heating of air produces a reduction in it's relative humidity. Low dew-point desiccant dryers provide far lower moisture contents than heated air alone. The accompanying graph illustrates the greater affinity for moisture of molecular sieve over silica gel or other types of desiccants at extremely low relative humidities,

Dehumidified Drying

Sizing Material throughput (kg/hr) x air flow requirement (Nm³/kg/hr) = Dryer air flow required (m³/hr)

Material throughput (kg/hr) x residence time (hr) : bulk density (kg/l) = Minimum hopper size required (L)

Pre-dry for stipulated residence time prior to processing

If material is stored in outdoor silos, consider conveying to indoor day bin prior to drying.

Poor filter maintenance is a common cause of reduced drying performance.

The "GUIDE TO .. " series are produced by PMMDA

Polymer Machinery Manufacturers and Distributors Association.

WEB: WWW.pmmda.org.uk

OTHER TITLES IN THE SERIES INCLUDE:
Granulators, Robot, Mould Temperature Control and Chilling